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Figure 7: Left: Filters of the initial linear embedding of RGB values of ViT-L/32. Center: Sim-
ilarity of position embeddings of ViT-L/32. Tiles show the cosine similarity between the position
embedding of the patch with the indicated row and column and the position embeddings of all other
patches. Right: Size of attended area by head and network depth. Each dot shows the mean attention
distance across images for one of 16 heads at one layer. See Appendix D.7 for details.
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